Search for Hidden Valleys at CMS

Dark Interactions Workshop

John Paul Chou Rutgers University

Thursday, June 12th, 2014

OUTLINE

- Focus on 8 TeV searches from CMS with Long-lived final states
 - HSCPs (EXO-12-026 & EXO-13-006)
 - Displaced Leptons (EXO-12-037)
 - (Slightly) Displaced Leptons (B2G-12-024)
 - Displaced Jets (EXO-12-038)

HSCPs

- Broad class of models that predict HSCPs (e.g. split-SUSY, GMSB, etc.)
- Five distinct analyses at CMS to capture different phenomena
 - Tracker+Time of Flight
 - Tracker-Only
 - Muon-Only
 - |Q|<1e
 - |Q|>1e
- Trigger on logical OR of muon and MET

Q=1 MEASUREMENTS

- Tracker-Only and Tracker+TOF
 - use dE/dx and momentum to measure the mass
 - For Muon-Only, only TOF is available
 - Assume dE/dx, β, and p_T are statistically uncorrelated for the background

Use "ABCD" method to extrapolate into the signal region

[EXO-12-026]

HSCP RE-INTERPRETATION

- Recently added a simplified Acc*Eff maps (in p_T, η, and β)
 - Can use generator-level information to accurately reproduce limits at ~10% level
 - As an example: excludes long-lived charginos in pMSSM

DISPLACED LEPTONS

- Search for two displaced isolated leptons (e+e-or μ+μ-)
 originating from a common vertex
 - trigger on "photons" or "L2 muon tracks" and match tracks to these objects
 - avoids d0 bias of dedicated electron/muon trigger reconstruction
 - Primary discriminating variable: d0 significance of tracks

Assume backgrounds are mirror symmetric about $|\Delta \phi| = \pi/2$

TRACK RECONSTRUCTION

- Efficiency driven by track reconstruction efficiency
 - cross check with cosmic muons
 - Require at least one X-candidate per event:
 - A common vertex with χ2/ndf<10(5) for e(μ) channel
 - **M(ee/μμ)>15 GeV**, ΔR(μμ)>0.2, pT(e) from ECAL

• Isolation: $\Sigma pT/pT<0.1$ counting tracks w/ pT>1 GeV in $\Delta R(trk,e/\mu)<0.3$ around each lepton (not counting the other lepton in the X-candidate)

MISSING HITS

DISPLACED DILEPTON SIGNAL REGION

Optimize cut on d0 significance to reduce backgrounds < 0.5 total events

LIMITS ON DISPLACED DILEPTONS

- Set limits at O(fb-pb) levels on the process H→XX→ℓℓℓℓ
 - Limits also set on RPV slepton → ℓℓv

(SLIGHTLY) DISPLACED LEPTONS

- · Look for two isolated, opposite-sign, opposite-flavor leptons
 - require 2D impact parameters between 0.05 cm and 2.0 cm
 - Does not require that the two leptons originate from a common vertex
 - Dominant backgrounds: Z→ττ and QCD
 - Check (below) that leptons with moderate displacements are still wellreconstructed

MC BACKGROUND CONTROL REGION

- Test modeling of Z→ττ in signal-depleted, Z→ττ-enriched region
 - M_T(ℓ's,MET)<50 GeV, H_T<100 GeV, Δφ(ℓ,ℓ)>2.5

RESULTS

- QCD background estimated with "ABCD" method
 - Opposite Sign v. Same Sign and Isolated
 v. Non-Isolated
- Three non-overlapping signal regions based on the minimum lepton d0
 - interpreted in terms of RPV stops

Event Source	$0.02 \text{ cm} < d_0 < 0.05 \text{ cm}$	$0.05 \mathrm{cm} < d_0 < 0.1 \mathrm{cm}$	$ d_0 > 0.1 \text{ cm}$
other EWK	$0.65 \pm 0.13 \pm 0.08$	$(0.89 \pm 0.53 \pm 0.11) \times 10^{-2}$	$<(89 \pm 53 \pm 11) \times 10^{-4}$
top	$0.767 \pm 0.038 \pm 0.061$	$(1.25 \pm 0.26 \pm 0.10) \times 10^{-2}$	$(2.4 \pm 1.3 \pm 0.2) \times 10^{-4}$
$Z{ ightarrow} au au$	$3.93 \pm 0.42 \pm 0.32$	$(0.73 \pm 0.73 \pm 0.06) \times 10^{-2}$	$<(73\pm73\pm6)\times10^{-4}$
QCD	$12.7 \pm 0.2 \pm 3.8$	$(98 \pm 6 \pm 30) \times 10^{-2}$	$(340 \pm 110 \pm 100) \times 10^{-4}$
Total expected background	$18.0 \pm 0.5 \pm 3.8$	$1.01 \pm 0.06 \pm 0.30$	$0.051 \pm 0.015 \pm 0.010$
Observation	19	0	0
$pp \rightarrow \widetilde{t}_1 \widetilde{t}_1^*$			
$M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ mm}$	$30.1 \pm 0.7 \pm 1.1$	$6.54 \pm 0.34 \pm 0.24$	$1.34 \pm 0.15 \pm 0.05$
$M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ cm}$	$35.3 \pm 0.8 \pm 1.3$	$30.3 \pm 0.7 \pm 1.1$	$51.3 \pm 1.0 \pm 1.9$
$M = 500 \text{ GeV}, \langle c\tau \rangle = 10 \text{ cm}$	$4.73 \pm 0.30 \pm 0.17$	$5.57 \pm 0.32 \pm 0.20$	$26.27 \pm 0.70 \pm 0.93$

DISPLACED DIJETS

- Massive long-lived particles can decay to jets
 - Split SUSY, RPV SUSY, Gauge Mediated SUSY, Hidden Valley models, etc.
- Search for events with dijets from a common, displaced vertex
 - Trigger on events with H_T>300 GeV and ≥2 jets with small fraction of prompt tracks

 Offline: form multivariate discriminant based on vertex track multiplicity, fraction of tracks with positive d0, # of missing hits, and variables from a

dedicated track clustering algorithm

DISPLACED DIJETS

 Search strategy: Identify two (overlapping) search regions targeting signals with low and high L_{xy}

$\mathbf{L}_{\mathbf{x}\mathbf{y}}$	$< 20 \mathrm{cm}(\mathrm{low})$	> 20 cm(high)
prompt tracks	≤ 1	≤ 1
prompt energy fraction	< 0.15	< 0.09
vertex/cluster disc.	> 0.9	> 0.8
expected background	$1.60 \pm 0.26(stat.) \pm 0.51(syst.)$	$1.14 \pm 0.15(stat.) \pm 0.52(syst.)$
observed	2	1

Table 1: Predicted background and the number of observed candidates for optimised selections.

Use data-driven techniques (generalized ABCD

CONCLUSIONS

- The CMS Hidden Valley long-lived program is active and much more is in the pipeline
 - Still, we're only beginning to scratch the surface
 - Need to cover a greater diversity of final states
 - Need to probe both shorter lifetimes and longer lifetimes
 - More to go with the 8 TeV program, and 13 TeV looks to be promising

Stay tuned!